環境政策ごとの目標の達成状況と具体的施策の概要 第3章

環境政策 地域から地球環境の保全に取り組むまちをめざす

【環境政策の目標】〔総合的目標〕

地球温暖化の進行を防ぐために、すべての主体が日常生活や事業活動において化石燃料の消費 削減とともに、エネルギーの効率的な利用や循環利用、再生可能エネルギー源の導入・使用など の努力を重ね、また地域全体として、環境に配慮した交通体系、まちの構造、建造物、設備等へ の計画的な転換を図り、温室効果ガスの排出量を大幅に削減した低炭素社会の実現をめざします。 同時に、都市気温が著しく上昇するヒートアイランド現象の抑制を図ります。

また、オゾン層の保護、酸性雨の防止をはじめとし、森林の保全その他の様々な地球規模の環 境問題の解決にも取り組み、地域から地球環境を保全するための取組を進めるまちをめざします。

環境要素の目標 環境要素 温室効果ガスの排出量を大幅に削減した低炭素社会の実現及びオゾン層の保護 地球環境 や酸性雨の防止をはじめとする様々な地球規模の問題の解決をめざし、地球環境 の保全に向けた取組が進められていること 環境項目 環境項目の目標 指標 口温室効果ガス排出量 温暖化 温室効果ガスの排出が抑制されていること □低公害・低燃費車の普及台数 口低CO2川崎ブランドの認定件数 オゾン層破壊の原因となる物質の排出が抑制されてい オゾン層破壊 口特定フロン等の環境濃度 ること 口硫黄酸化物排出量 (工場・事業場) 酸性雨 酸性雨の原因となる物質の排出が抑制されていること 口窒素酸化物排出量 (工場・事業場) 世界の森林の保護及び持続可能な森林経営の実現に貢 森林 献していること 環境要素 環境要素の目標 エネルギーの効率的な利用や循環利用、再生可能エネルギー源の活用が進められ エネルギー ていること 環境項目 環境項目の目標 指標 エネルギーの効率的な利用や循環利用、再生可能エネ 口太陽エネルギー (太陽光・熱) エネルギー ルギーの活用が進められていること 利用量 環境要素 環境要素の目標 都市気温 環境に配慮した都市構造や建造物等の整備が図られ、ヒートアイランド現象が抑 制されていること [ヒートアイランド現象] 環境項目 環境項目の目標 指標 都市排熱 都市排熱が抑制されていること □年間平均気温

総合的な評価に用いる指標

	施策の方向	指標	総合的な評価 に用いるもの
I - 1	温室効果ガス排出量の削減等	温室効果ガス排出量	0
	地球温暖化対策の推進	低公害・低燃費車の普及台数	
		低CO₂川崎ブランドの認定件数(再掲)	
I - 2	地域のエネルギー資源の有効	太陽エネルギー(太陽光・熱)利用量	0
	かつ効率的な利用の促進		
I - 3	ヒートアイランド対策の推進	年間平均気温	0
I - 4	その他の地球環境保全	特定フロン等の環境濃度	0
		硫黄酸化物排出量(工場・事業場)	
		窒素酸化物排出量(工場・事業場)(再掲)	

施策の方向 I-1 温室効果ガス排出量の削減等地球温暖化対策の推進

指 標	目標・現状・指標がめざす方向
温室効果ガス	【目標】
排出量	 ・市域における温室効果ガス排出量の削減に取り組むとともに、本市の特徴である優れた環境技術を活かし地球全体での温室効果ガス排出量の削減に貢献することで、2020 年度までに 1990 年度における市域の温室効果ガス排出量の 25%以上に相当する量の削減を目指す。(※) ・各主体が削減目標に向かって、自らの温室効果ガス排出量の削減を図るとともに、協働の取組を進めることで、温室効果ガス排出量を削減する。 ・国全体の中期目標に関する検討状況等を見極めながら、必要に応じて目標の改定について検討を行う。 【基準年度】2,799 万トン-CO2 (1990 年度) ※国の算定マニュアルの改定等に伴い再算定した値であり、これまでの公表値と異なります。 ※基準年度:二酸化炭素、メタン、一酸化二窒素は 1990 年度、その他は 1995 年度
	【指標がめざす方向】少ないほうが良い
低公害・低燃	【目標】低公害・低燃費車の導入を促進すること
費車の普及台	【基準年度】市内の電気自動車導入台数:24台(2009年度)、
数	市内のハイブリッド車導入台数:4,303台(2008年度)
	【指標がめざす方向】多いほうが良い
低CO₂川崎ブ	
ランドの認定	【基準年度】47件(2013年度)
件数	【指標がめざす方向】多いほうが良い

※ 2010年10月策定の「川崎市地球温暖化対策推進基本計画」に基づく目標

目標・指標の達成状況	指標 評価	方向 評価
 ■指標:温室効果ガス排出量(速報値) ・2015年度の市内の総排出量(改定値)は2,253万トン-CO₂(対前年度:64万トン-CO₂減少、対基準年度(※):19.5%減少) ・2016年度の市内の総排出量(暫定値)は2,261万トン-CO₂(対前年度:8万トン-CO₂増加、対基準年度(※):19.2%減少) 二酸化炭素の2015年度の排出量(改定値)は2,202万トン-CO₂、2016年度の排出量(暫定値)は2,210万トン-CO₂ ※基準年度:二酸化炭素、メタン、一酸化二窒素は1990年度、その他は1995年度注:温室効果ガス排出量の達成状況の評価は2016年度暫定値を用いています。 	1*	1
■指標:低公害・低燃費車普及台数 ・2016年度の電気自動車の普及台数は733台、ハイブリッド車の普及台数は45,428台(内 プラグインハイブリッド車は549台) (対前年度:電気自動車は76台増加・ハイブリッド車は5,978台増加、対基準年度:多い)	5	
■指標:低CO₂川崎ブランドの認定件数(再掲)【施策の方向 V - 1 環境関連産業の振興・育成】参照	5	

[方向評価は「*」の付いた指標評価の平均値をもとに評価しています]

現状

■温室効果ガス排出量

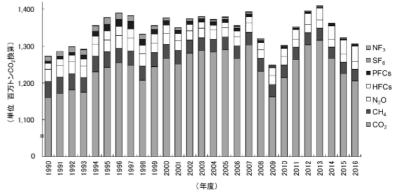
地球温暖化は、二酸化炭素、メタン、一酸化二窒素等の温室効果ガス排出量の増加や二酸化炭素の吸収源である森林の減少などが原因ですが、二酸化炭素の排出による寄与度が最も大きく、日本が排出する温室効果ガスのうち二酸化炭素の寄与は92.3%(2016年度)となっています。

気候変動に関する政府間パネル(IPCC)第5次報告書(2013年)では、人間活動が20世紀半ば以降に観測された温暖化の主な原因であった可能性が極めて高いとされ、将来予測では4つのシナリオがあり、可能な限りの温暖化対策を前提としたシナリオでは、気温上昇は0.3~1.7℃、海面上

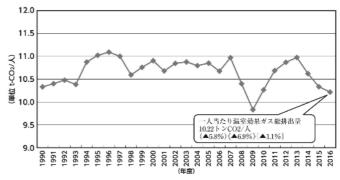
昇は 0.26~0.55m、非常に高い排出が続くシナリオでは、気温上昇は 2.6~4.8℃、海面上昇は 0.45 ~0.82mの範囲に入る可能性が高いと予測しています。

地球温暖化は生態系に大きな影響を与え、世界では深刻な食糧不足や渇水、水害が生じ、日本でも 短時間強雨の発生などによる災害、水稲の品質低下などの農林水産業への影響、熱ストレスや感染症 のリスクの増加等が危惧されています。

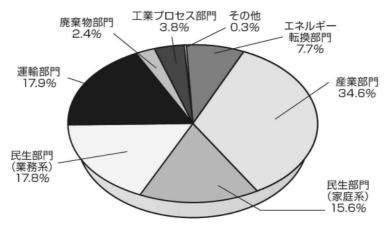
我が国の温室効果ガスの排出量


2016年度の温室効果ガスの総排出量(各温室効果ガスに地球温暖化係数(GWP)を乗じ、それらを合算したもの)は、13億700万トン- CO_2 で、1990年度の総排出量(12億7,200万トン)と比べ、2.8%増加し、前年度と比べ 1.2%減少しています。2016年度の一人当たり温室効果ガス総排出量は10.22トン- CO_2 /人で、前年度比で1.1%減少しています。

●二酸化炭素 (CO2)


2016 年度の二酸化炭素排出量は、12 億600 万トン-CO₂ となり、1990 年度比で3.9%増加、前年比で1.6%減少しています。部門別にみると二酸化炭素排出量の約3割を占める産業部門からの排出は、2016 年度において1990 年度比で16.7%減少しており、前年度と比べると3.5%減少しています。

運輸部門からの排出は、2016 年度において 1990 年度比で 3.9%の増加となり、前年度比で 0.9%減少しています。


家庭部門からの排出は、2016年度において 1990年度比で 44.6%増加しており、前年度比で 0.6%増加しています。業務その他部門(オフィスビル等)は、2016年度において 1990年度比で 65.9%の増加となり、前年度比で 1.7%減少しています。

温室効果ガス排出量の推移(1990-2016年度)

一人あたり温室効果ガス総排出量(1990-2016年度)

二酸化炭素の部門別排出量(2016年度)

●メタン(CH₄)

2016 年度のメタン排出量は 3,080 万トン-CO₂ であり、基準年(1990 年度)と比べると 30.5%減少し、前年度比で 1.1%減少しています。前年度からの減少は、廃棄物分野及び農業分野からの排出量の減少等によるものとされています。

●一酸化二窒素 (N₂O)

2016 年度の一酸化二窒素(亜酸化窒素)排出量は 2,070 万トン-CO2であり、基準年(1990年度)と比べると 34.7%減少し、前年度比で 1.4%減少しています。前年度からの減少は、工業プロセスおよび製品の使用分野の排出の減少等によるものとされています。

●ハイドロフルオロカーボン類 (HFCs)*、パーフルオロカーボン類 (PFCs)*、六ふっ化硫黄 (SFa)、三ふっ化窒素 (NF₃)

2016 年度の HFCs 排出量は 4,250 万トン-CO2であり、基準年(1995 年度)と比べると 68.7%増加し、前年度比で 8.3%増加しています。前年度からの増加は、オゾン層破壊物質である HCFC から HFC への代替により、冷媒からの排出量が増加したこと等によるものとされています。

PFCs 排出量は、340 万トン-CO2であり、基準年(1995 年度)と比べると 80.7%減少し、前年度比で 2.0%増加しています。前年度からの増加は半導体・液晶製造分野において排出量が増加したこと等によるものとされています。

SF₆排出量は、230 万トン-CO₂であり、基準年(1995 年度)と比べると 86.0%減少し、前年度比で 4.7%増加しています。前年度からの増加は、金属生産による排出の増加等によるものとされています。

 NF_3 排出量は、60 万トン $-CO_2$ であり、基準年(1995 年度)と比べると 200.0%増加し、前年度比で 11.1%増加しています。前年度からの増加は、半導体・液晶製造分野における排出量の増加等によるものとされています。

市内の温室効果ガス排出量

2015 年度の市内の温室効果ガス総排出量(改定値)は、2,222 万トン- CO_2 、2016 年度(暫定値)は 2,261 万トン- CO_2 で、基準年度(※)の総排出量 2,799 万トン- CO_2 と比べ、2015 年度 20.6%の減少、2016 年度 19.2%の減少となっています。

市内の温室効果ガス排出量

(単位: 万トン-CO₂)

温室効果ガス		地球温暖 化係数	基準年度※	2014 年度	2015 年度 (改定値)	2016 年度 (暫定値)	基準年度と の比較
温室効果ガス総排出量		_	2,799	2,317	2,253	2,261	△19.2%
削	咸率(基準年度比)	_	_	△17.2%	△19.5%	△19.2%	
	二酸化炭素	1	2,547	2,271	2,202	2,210	△13.2%
	メタン	25	1.5	2.7	2.8	3.0	98.4%
	一酸化二窒素 298		7.5	9.4	9.7	9.9	32.2%
内	HFC _s 1,430		30.8	27.1	30.7	32.4	5.4%
訳	PFCs 7,390等		20.7	2.1	3.2	2.3	△88.6%
	六ふっ化硫黄	22,800	191.2	4.1	5.1	2.8	△98.5%
	三ふっ化窒素	三ふっ化窒素 17,200		0	0	0	_

※国の算定マニュアルの改定、統計書の修正等に伴い再算定した値であり、これまでの公表値と異なる。

※基準年度は、二酸化炭素、メタン、一酸化二窒素は 1990 年度、HFC_S、PFC_S、SF₆、NF₃は 1995 年度

●二酸化炭素 (CO₂)

市内の二酸化炭素排出量の推移は、1990 年度の 2,547 万トン- CO_2 が最も高く、それ以降は 2,100 万 \sim 2,400 万トン- CO_2 で推移しており、2016 年度は 2,210 万トン- CO_2 となり、基準年度に比べて 13.2%の減少となっています。

2016 年度の排出量を部門別で見ると、1990 年度に比べ、民生部門で排出量が増加しています。エネルギー転換部門、産業部門、運輸部門、廃棄物部門、工業プロセス部門は、1990 年度に比べ排出量が減少しています。

市内の部門別二酸化炭素排出量の推移

(単位: 万トン-CO₂)

	1990 年度 (基準年度)	2000 年度	2014 年度	2015 年度 (改定値)	2016 年度 (暫定値)	基準年度との 比較
エネルギー転換部門	349	354	253	254	249	△28.6%
産業部門	1,730	1,466	1,405	1,361	1,394	△19.4%
民生部門(家庭系)	111	140	198	192	175	58.1%
民生部門(業務系)	94	114	175	170	173	84.4%
運輸部門	125	149	124	112	105	△16.1%
廃棄物部門	45	45	47	47	44	△1.2%
工業プロセス部門	93	64	70	66	70	△25.3%
合計	2,547	2,331	2,271	2,202	2,210	△13.2%

[※]国の算定マニュアルの改定、統計書の修正等に伴い再算定した値であり、これまでの公表値と異なる。

2016年度の部門別の排出割合では、産業系(エネルギー転換部門、産業部門、工業プロセス部門)が7割以上と大きな排出源となっています。

次に大きな排出割合となっているのは民生部門(家庭系)の 7.9%で、民生部門(業務系)が続いています。

川崎市内の CO2排出量は全国の排出量の約 1.8%を占めています。

これは、川崎市が京浜工業地帯の中核として、鉄鋼業や化学製品製造業等の産業が集積し、首都圏の生産拠点都市として機能しているという地理的な特性を反映しているものです。

廃棄物部門 工業プロセス部門 エネルギー 3.2% 2.0% 運輸部門 転換部門 4.7% 11.3% 民生部門 (業務系) 産業部門 7.8% 63.1% 民生部門 (家庭系) 7.9%

市内の部門別二酸化炭素排出量の構成比(2016年度暫定値)

※国の算定マニュアルの改定、統計書の修正等に伴い再算定した値であり、これまでの公表値と異なる。

●その他の温室効果ガス

メタン、一酸化二窒素、ハイドロフルオロカーボン類の排出量は増加傾向にあり、基準年度と比較すると、メタン 98.4%増加、一酸化二窒素 32.2%増加、ハイドロフルオロカーボン類は 5.4% 増加となっています。

また、パーフルオロカーボン類と六ふっ化硫黄については減少傾向にあり、基準年度と比較すると、パーフルオロカーボン類は 88.6%減少、六ふっ化硫黄は 98.5%減少となっています。なお、三ふっ化窒素の排出はありません。

■低公害・低燃費車の普及台数

低公害車の普及促進のため、事業者に対して、天然ガス車及びハイブリッド車の導入のための助成制度を継続して実施し、2017年度に本制度を活用した台数は、7台でした。

また、公用車については、グリーン購入推進方針に基づき、九都県市指定低公害車*を積極的に導入するよう働きかけ、2018年3月末現在、保有総台数 1,657 台のうち 1,493 台が九都県市指定低公害車となっています。

さらに、電気自動車等の公用車への率先導入を推進しており、2018 年 3 月末時点の保有台数は、12 台(内訳:電気自動車 9 台、燃料電池自動車 3 台)でした。

■低CO₂川崎ブランドの認定件数(再掲)

【施策の方向V-1環境関連産業の振興・育成】p100参照

施策の方向 |-2 地域のエネルギー資源の有効かつ効率的な利用の促進

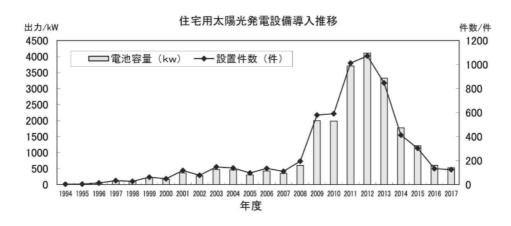
指 標	目標・現状・指標がめざす方向
太陽エネルギー	【目標】2020 年度までに 2005 年度比 30 倍とすること
(太陽光・熱)利用量	【基準年度】太陽光発電設備容量:3,069kW ほか(2005年度)
	【指標がめざす方向】多いほうが良い

目標・指標の達成状況	指標 評価	方向 評価
■指標:太陽エネルギー(太陽光・熱)利用量		
• 太陽光発電設備導入量 約81,000 kW(推測)	5 *	5
(対前年度:約4,000kW増加、対基準値:多い)		

[方向評価は「*」の付いた指標評価の平均値をもとに評価しています]

現状

■太陽エネルギー利用量


(1) 現状・課題

本市のエネルギー消費の特徴として、臨海部の産業部門での消費が市全体の約7割を占めることがあげられます。

再生可能エネルギー源の利用は、エネルギーの利用段階で温室効果ガスをほとんど排出せず、地球温暖化対策の推進にも大きく貢献します。特に、太陽光、太陽熱といった再生可能エネルギー源は、特定の地域に偏在しているものではなく、地球上であればどこでも利用できることから、「地産地消のエネルギー」といった特性を有しており、本市でもその重要性を認識し、導入促進を行っています。

(2) 再生可能エネルギー源の利用設備の導入状況等

市内域における太陽光発電設備導入量は、住宅、産業、公共施設を含めて約81,000 k W (2017年度末推測)となっています。また、本市では、2006年度から住宅用太陽光発電設備設置補助を実施しています。なお、住宅用太陽光発電設備導入実績については6,284件、23,158kW (2017年度末実績)となっています。

さらに、公共施設への太陽光発電設備設置について、率先導入を行い、これまでの累計で110施設に 導入しています。

また、大規模なエネルギー消費地域である本市の場合、こうした電力を積極的に活用し、他地域での 普及を需要側から推進するため、グリーン電力証書の利用を推進しています。

【グリーン電力使用実績】

用途	2017年度購入量	累計
イベント(CCかわさき環境ミーティングなど)	5,500 k Wh	102,490 k Wh

(3)エネルギーの有効利用

・未利用エネルギー等の利用

現在行われている公共施設の排熱利用としては、ごみ焼却施設における発電及び温水プールへの供給、入江崎総合スラッジセンターにおける下水汚泥焼却熱の温水プール等での利用が行われています。

- ・廃棄物エネルギー 2か所
- ・下水熱エネルギー 2か所

・コージェネレーション*

公共施設におけるエネルギーの効率的な利用の推進を図るために、多摩区総合庁舎、川崎病院、南部生活環境事業所、多摩病院にコージェネレーションシステムを導入しています。

施策の方向 | -3 ヒートアイランド*対策の推進

指 標	目標・現状・指標がめざす方向
年間平均気温	【基準年度】16.7℃(中原区)(2009年度)
	【指標がめざす方向】現状維持

目標・指標の達成状況	指標 評価	方向 評価
 ■指標:年間平均気温 ・中原区 16.6℃ 臨海部(大師・川崎)の年間平均気温は 16.0℃、内陸部(幸・中原・高津)の年間平均気温は 16.1℃、丘陵部(宮前・多摩・麻生)の年間平均気温は 15.9℃(田島は集計に含まず)(対前年度:0.3℃減少、対基準年度:低い) 	5 *	5

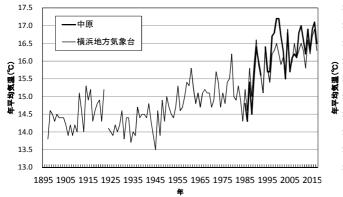
現状

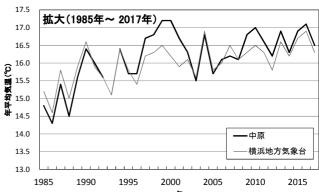
[方向評価は「*」の付いた指標評価の平均値をもとに評価しています]

■年間平均気温

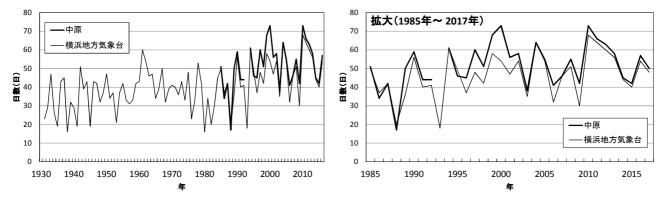
一般局9局において測定した年間平均気温(2017年度実績)は、次のとおりです。

地域	臨海部			内陸部			丘陵部		
測定局	大師	田島	川崎	幸	中原	高津	宮前	多摩	麻生
平均気温(℃)	16.4	16.9*	15.5	16.2	16.6	15.5	16.1	15.6	16.1

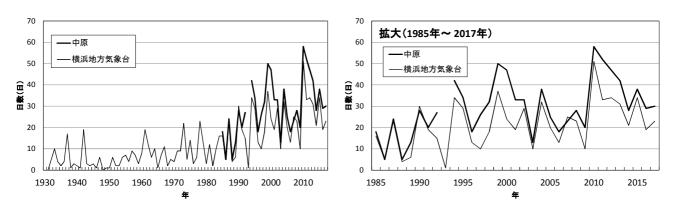

なお、2017年度の一般局における市内の真夏日、熱帯夜、冬日の発現日数は、次のとおりです。

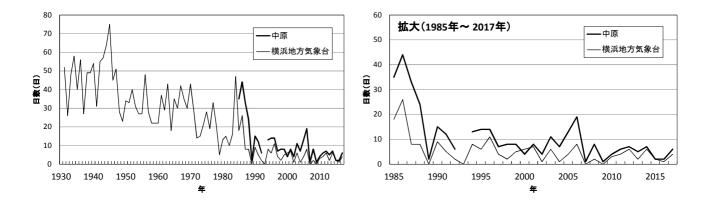

地域 臨海部			内陸部			丘陵部			
測定局	大師	田島	川崎	幸	中原	高津	宮前	多摩	麻生
真夏日(日数)	39	56	24	38	50	39	53	46	52
熱帯夜(日数)	24	30	19	26	30	19	25	18	23
冬 日(日数)	5	5*	13	8	11	23	18	29	20

※田島は4,5月に欠測が生じています。


年平均気温は上昇傾向、真夏日日数(最高気温が 30℃以上の日数)と熱帯夜日数(日最低気温が 25℃以上の日数)には増加傾向、冬日日数(最低気温が0℃未満の日数)には減少傾向が見られています。(詳細:環境総合研究所都市環境課ホームページ「川崎市気候変動レポート」参照)

なお、指標の年間平均気温については、年度単位のデータとなりますが、年平均気温、真夏日、熱帯夜、冬日の経年推移を示したグラフについては、暦年単位のデータとなります。




年平均気温の経年推移

真夏日の経年推移

熱帯夜の経年推移

冬日の経年推移

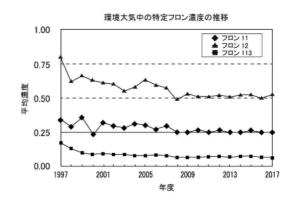
施策の方向 | -4 その他の地球環境保全

指 標	目標・現状・指標がめざす方向							
特定フロン等の環								
境濃度	【基準年度】0.25ppb(CFC-11)、0.53ppb(CFC-12)など(2009 年度)							
	【指標がめざす方向】低いほうが良い							
硫黄酸化物排出量								
(工場・事業場)	【基準年度】800 トン(2009 年度)							
	【指標がめざす方向】少ないほうが良い							
窒素酸化物排出量	【目標】対策目標量(9,330 トン)以下の排出量とするとともに、低減を進めること							
(工場・事業場)	【基準年度】9,591 トン(2009 年度)							
(再掲)	【指標がめざす方向】少ないほうが良い							

目標・指標の達成状況			
■指標:特定フロン等の環境濃度 ・池上自動車排出ガス測定局、大師・中原・多摩一般環境大気測定局4地点の平均濃度は、フロン-11が0.25ppb、フロン-12が0.52ppb、フロン-113が0.065ppb (対前年度:増減なし、対基準年度:低い)			
■指標:硫黄酸化物排出量(工場・事業場)・工場・事業場からの排出量657トン(対前年度:143トン増加、対基準年度:少ない)	4		
■指標:窒素酸化物排出量(工場・事業場)(再掲)【施策の方向Ⅳ - 1 大気環境の保全】参照	4		

※2017年11月現在集計値

[方向評価は「*」の付いた指標評価の平均値をもとに評価しています]


現状

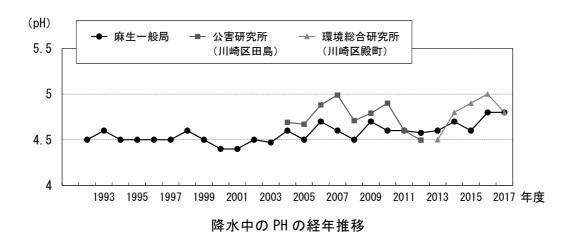
■特定フロン*等の環境濃度

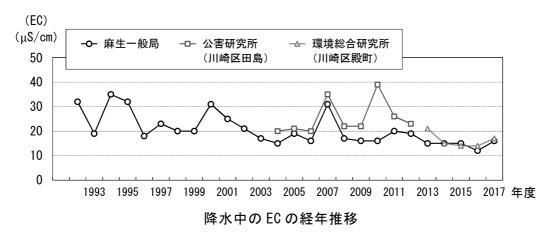
市内4地点(池上自動車排出ガス測定局、大師・中原・多摩一般環境大気測定局)で、毎月主な特定フロン(CFC)の環境濃度を測定しています。

2017年度における4地点の平均濃度は、フロン-11が0.25ppb*、フロン-12が0.52ppb、フロン-113が0.065ppbとなっています。

これらの特定フロンはすでに生産されていませんが、様々な分野で使用されています。近年、ほぼ横ばいで推移しており、局地的汚染を受けていないと考えられる北海道の観測地点(環境省調査)と比較しても差異はみられませんでした。

■硫黄酸化物排出量及び窒素酸化物排出量


市内工場・事業場からの窒素酸化物、硫黄酸化物の排出量


年度	2009	2010	2011	2012	2013	2014	2015	2016	2017
窒素酸化物(トン/年)	9,591	9,348	9,467	9,144	9,180	8,744	8,777	8,876	8,917
硫黄酸化物(トン/年)	800	825	635	496	582	696	552	514	657

■酸性雨に関する環境測定

市内の酸性雨*の状況を把握するために、1991年8月から麻生一般局に、2003年12月から公害研究所(川崎区田島)に酸性雨自動分析装置を設置し、降水のpH*等の測定を行っています。

2017年度の pH 及び導電率(EC)の年平均値は、それぞれ麻生一般局で 4.8 及び 16µS/cm、環境総合研究所で 4.8 及び 17µS/cm でした。なお、公害研究所が環境総合研究所に移転したのに伴い、2013年1月より測定地点を公害研究所から環境総合研究所(川崎区殿町)に変更しています。

